Exosomes as potential biomarkers of radiation exposure

Exosomes = potential biomarkers of radiation in the Read more

Before the cardiologist goes nuclear w/ stress #AHA17

Measuring troponin in CAD patients before embarking on stress testing may provide Read more

Virus hunting season open

Previously unknown viruses, identified by Winship + UCSF scientists, come from a patient with a melanoma that had metastasized to the Read more

biomedicine

Staring (cell) death in the face: imaging agents for necrotic cells

DNA usually occupies a privileged place inside the cell. Although cells in our body die all the time, an orderly process of disassembly (programmed cell death or apoptosis) generally keeps cellular DNA from leaking all over the place. DNA’s presence outside the cell means something is wrong: tissue injury has occurred and cells are undergoing necrosis.

Researchers from the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University have devised a way to exploit the properties of extracellular DNA to create an imaging agent for injured tissue. Niren Murthy and Mike Davis recently published a paper in Organic Letters describing the creation of “Hoechst-IR.” This imaging agent essentially consists of the DNA-binding compound Hoechst 33258 (often used to stain cells before microscopy), attached to a dye that is visible in the near-infrared range. A water-loving polymer chain between the two keeps the new molecule from crossing cell membranes and binding DNA inside the cell.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Biomedical informatics impact on health care outcomes

Biomedical informatics is a multi-disciplinary field, involving the collection, management, analysis and integration of data in biomedicine used for research and healthcare delivery.

DNA double helix

DNA double helix

According to Joel H. Saltz, MD, PhD, director of Emory’s Center for Comprehensive Informatics, biomedical informatics enhances medical research via technology by making it possible to collect, weed through and analyze widespread data on patient treatments and outcomes.

Saltz is a Georgia Research Alliance Eminent Scholar and serves as chief medical information officer at Emory Healthcare and as a professor in the departments of pathology, biostatistics and bioinformatics, and mathematics and computer science at Emory.

Joel H. Saltz, MD, PhD

Joel H. Saltz, MD, PhD

A recent essay excerpted below, published by Knowledge@Emory, says advances in information technology are becoming increasingly critical to disease treatment and administrative efficiency at healthcare facilities.

Given the national debate over costs in the healthcare system, medical practitioners and IT experts say that the evolving field of biomedical informatics can provide large scale improvements in treatment processes, and ultimately, in the price tag for care.

Saltz notes in the article that biomedical informatics can be applied to any subset of medical research, giving clinicians access to “rich” or large pools of patient data and applying technological solutions and mathematical modeling to the process.

He says that the overarching goal of the Center is to foster collaboration between scientific and software systems researchers. However, the synthesis of medical information from disparate and numerous sources remains a key research effort at the Center and for other institutions and companies in the biomedical informatics field

The Center was selected recently as an In Silico Brain Tumor Research Center and will use advanced informatics tools and databases to discover more effective brain tumor treatments. Read here for more information about projects at the Center.

Posted on by sgoodwin in Uncategorized Leave a comment