Peeling away pancreatic cancers' defenses

A combination immunotherapy approach that gets through pancreatic cancers’ extra Read more

Immune cell activation in severe COVID-19 resembles lupus

In severe cases of COVID-19, Emory researchers have been observing an exuberant activation of B cells, resembling acute flares in systemic lupus erythematosus (SLE), an autoimmune disease. The findings point towards tests that could separate some COVID-19 patients who need immune-calming therapies from others who may not. It also may begin to explain why some people infected with SARS-CoV-2 produce abundant antibodies against the virus, yet experience poor outcomes. The results were published online on Oct. Read more

Muscle cell boundaries: some assembly required

The worm C elegans gives insight into muscle cell assembly + architecture Read more

bile acid transport

New pediatric digestive/liver disease gene identified by international team

In a study published this month in Hepatology, a multinational team of researchers describes a newly identified cause of congenital diarrhea and liver disease in children.

The rare disorder is characterized by significant diarrhea beginning soon after birth, low serum levels of fat-soluble vitamins and evidence of liver disease. Despite continued symptoms, with medical support, the children grow and develop normally, at least to the age of 12.

From left to right: Mutaz Sultan, Orly Elpeleg and Paul Dawson, representing three collaborating institutions.

Researchers from Emory University School of Medicine and Children’s Healthcare of Atlanta, working with colleagues from Makassed Hospital, Al-Quds University and Hadassah Medical Center, Hebrew University of Jerusalem studied a family with two children from the Palestinian territories who suffer from the disorder.

The team found that both children had inherited a mutation in a gene responsible for the transport of bile acids, which facilitate the digestion and absorption of dietary fats and fat-soluble vitamins. Although mutations had been identified in other genes important for the recycling of bile acids, this is the first report in humans of disease-associated defects in this gene, called Organic Solute Transporter-beta (SLC51B).

Almost 20 years ago, pediatric GI & hepatology researcher Paul Dawson, PhD, and colleagues identified mutations in another bile acid transporter gene (ASBT; SLC10A2) that caused congenital bile acid diarrhea.

“Even at that time, we knew that there were patients with similar symptoms that did not carry mutations in ASBT. But the genetic cause remained a mystery.” Dawson says. “What’s distinctive about this report is that these patients also have features of liver disease, which was not observed in previously described congenital bile acid diarrhea patients.” Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment