One more gene between us and bird flu

We’re always in favor of stopping a massive viral pandemic, or at least knowing more about what might make one Read more

Antibody diversity mutations come from a vast genetic library

The antibody-honing process of somatic hypermutation is not Read more

Emory Microbiome Research Center inaugural symposium

Interest in bacteria and other creatures living on and inside us keeps climbing. On August 15 and 16, scientists from a wide array of disciplines will gather for the Emory Microbiome Research Center inaugural Read more

basal cell carcinoma

Navigating monstrous anticancer obstacles

A new PNAS paper from geneticist Tamara Caspary’s lab identifies a possible drug target in medulloblastoma, the most common pediatric brain tumor. Come aboard to understand the obstacles this research seeks to navigate. Emory library link here.

Standard treatment for children with medulloblastoma consists of surgery in combination with radiation and chemotherapy. Alternatives are needed, because survivors can experience side effects such as neurocognitive impairment. One possibility has emerged in the last decade: inhibitors of the Hedgehog pathway, whose aberrant activation drives growth in medulloblastoma.

Medulloblastoma patients are caught “between Scylla and Charybdis”: facing a deadly disease, the side effects of radiation and/or existing Hedgehog inhibitors. From Wikimedia.

As this 2017 Oncotarget paper from St. Jude’s describes, Hedgehog inhibitors are no fun either. In adults, these agents cause muscle spasms, hair loss, distorted sense of taste, fatigue, and weight loss. In a pediatric clinical trial, the St. Jude group observed growth plate fusions, resulting in short stature. The drug described in the paper was approved in 2012 for basal cell carcinoma, a form of cancer whose growth is also driven by the Hedgehog pathway. Basal cell carcinoma is actually the most common form of human cancer, although it is often caught at an early stage that doesn’t require harsh treatment.

Caspary’s lab studies the Hedgehog pathway in early embryonic development. In the PNAS paper, former graduate student Sarah Bay and postdoc Alyssa Long show that targeting a downstream part of the Hedgehog pathway may be a way to avoid problems presented by both radiation/chemo and existing Hedgehog inhibitors. Read more

Posted on by Quinn Eastman in Cancer, Neuro Leave a comment