Triple play in science communication

We are highlighting Emory BCDB graduate student Emma D’Agostino, who is a rare triple play in the realm of science communication. Emma has her own blog, where she talks about what it’s like to have cystic fibrosis. Recent posts have discussed the science of the disease and how she makes complicated treatment decisions together with her doctors. She’s an advisor to the Cystic Fibrosis Foundation on patient safety, communicating research and including the CF community Read more

Deep brain stimulation for narcolepsy: proof of concept in mouse model

Emory neurosurgeon Jon Willie and colleagues recently published a paper on deep brain stimulation in a mouse model of narcolepsy with cataplexy. Nobody has ever tried treating narcolepsy in humans with deep brain stimulation (DBS), and the approach is still at the “proof of concept” stage, Willie says. People with the “classic” type 1 form of narcolepsy have persistent daytime sleepiness and disrupted nighttime sleep, along with cataplexy (a loss of muscle tone in response Read more

In current vaccine research, adjuvants are no secret

Visionary immunologist Charlie Janeway was known for calling adjuvants – vaccine additives that enhance the immune response – a “dirty little secret.” Janeway’s point was that foreign antigens, by themselves, were unable to stimulate the components of the adaptive immune system (T and B cells) without signals from the innate immune system. Adjuvants facilitate that help. By now, adjuvants are hardly a secret, looking at some of the research that has been coming out of Emory Read more

Baek Kim

Cancer drug discovery: targeting DNA repair

Standard anticancer treatments, such as chemotherapy, target rapidly dividing cells by damaging their DNA. A newer strategy is to undercut cancer cells’ ability to repair DNA damage.

Radiation oncologist David Yu, MD, PhD

Winship Cancer Institute investigators led by David Yu, MD, PhD have identified a distinct function in DNA double strand break repair for an enzyme called SAMHD1. Depleting or inhibiting SAMHD1 could augment anticancer treatments that induce DNA double-strand breaks, such as ionizing radiation or PARP inhibitor drugs, they suggest. Ionizing radiation is a mainstay of cancer treatment and PARP inhibitors are being developed for several cancer types.

The findings were published this week in Cell Reports (open access).

SAMHD1 was known for its ability to chop up the building blocks of DNA, and had come to the attention of virologists because it limits the ability of retroviruses such as HIV to infect some cell types. The first author of the paper, postdoc Waaqo Daddacha, PhD, previously studied SAMHD1 with virologist Baek Kim, PhD, professor of pediatrics.

Cancer researchers had already sought to harness a retroviral protein called Vpx, which viruses evolved to disable SAMHD1. Acute myeloid leukemia cells use SAMHD1 to get rid of the drug cytarabine, so Vpx can sensitize AML to that drug. The Cell Reports paper shows that virus-like particles carrying Vpx could be deployed against other types of cancer, in combination with agents that induce DNA double-strand breaks. Read more

Posted on by Quinn Eastman in Cancer Leave a comment