Beyond the amyloid hypothesis: proteins that indicate cognitive stability

If you’re wondering where Alzheimer’s research might be headed after the latest large-scale failure of a clinical trial based on the “amyloid hypothesis,” check this Read more

Mother's milk is OK, even for the in-between babies

“Stop feeding him milk right away – just to be safe” was not what a new mother wanted to hear. The call came several days after Tamara Caspary gave birth to fraternal twins, a boy and a girl. She and husband David Katz were in the period of wonder and panic, both recovering and figuring out how to care for them. “A nurse called to ask how my son was doing,” says Caspary, a developmental Read more

Focus on mitochondria in schizophrenia research

Despite advances in genomics in recent years, schizophrenia remains one of the most complex challenges of both genetics and neuroscience. The chromosomal abnormality 22q11 deletion syndrome, also known as DiGeorge syndrome, offers a way in, since it is one of the strongest genetic risk factors for schizophrenia. Out of dozens of genes within the 22q11 deletion, several encode proteins found in mitochondria. A team of Emory scientists, led by cell biologist Victor Faundez, recently analyzed Read more

bacterial genetics

Meningitis bacteria adapt to STI niche — again?

A new paper in PNAS from Emory scientists highlights a neat example of bacterial evolution and adaptation related to sexually transmitted infections. Neisseria meningitidis, a bacterium usually associated with meningitis and sepsis, sometimes appears in the news because of cases on college campuses or other outbreaks.

The N meningitidis bacteria causing a recent cluster of sexually transmitted infections in Columbus, Ohio and other US cities have adapted to the urogenital environment, an analysis of their DNA shows.

Update: May 2016 Clinical Infectious Diseases paper on the same urethritis cluster.

Genetic changes make this clade look more like relatives that are known to cause gonorrhea. Some good news is that these guys are less likely to cause meningitis because they have lost their outer capsule. They have also gained enzymes that help them live in low oxygen.

The DNA analysis helps doctors track the spread of this type of bacteria and anticipate which vaccines might be protective against it. Thankfully, no alarming antibiotic resistance markers are present (yet) and currently available vaccines may be helpful. Full press release here, and information about meningococcal disease from the CDC here.

This looks like a well-worn path in bacterial evolution, since N. gonorrhoeae is thought to have evolved from N. meningitidis and there are recent independent examples of N. meningitidis adapting to the urogenital environment. 

Posted on by Quinn Eastman in Immunology Leave a comment

A CRISPR way to edit DNA

The CRISPR/Cas gene editing system has a lot of buzz behind it: an amusingly crunchy name, an intriguing origin, and potential uses both in research labs and even in the clinic. We heard that Emory scientists are testing it, so an explainer was in order.

The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) system was originally discovered by dairy industry researchers seeking to prevent phages, the viruses that infect bacteria, from ruining the cultures used to make cheese and yogurt. Bacteria incorporate small bits of DNA from phages into their CRISPR region and use that information to fight off the phages by chewing up their DNA.

At Emory, infectious disease specialist David Weiss has published research on CRISPR in some types of pathogenic bacteria, showing that they need parts of the CRISPR system to evade their hosts and stay infectious. Biologist Bruce Levin has modeled CRISPR-mediated immunity’s role in bacterial evolution.

What has attracted considerable attention recently is CRISPR/Cas-derived technology, which offers the ability to dive into the genome and make a very precise change. Scientists have figured out how to retool the CRISPR/Cas machinery – the enzymes that do the chewing of the phage DNA — into enzymes that can be targeted by an external guide.

For biologists in the laboratory, this is a way to probe a gene’s function by making an animal with its genes altered in a certain way. The method is gaining popularity here at Emory. Geneticist Peng Jin reports:

“CRISPR is much more efficient and quicker than traditional homologous recombination. One can directly inject the plasmid and guide RNA into mouse embryo to make knockout mice. You can also target multiple genes at the same time.”

The traditional method Jin refers to involves taking cultured embryonic stem cells, zapping DNA carrying a modified or disabled gene into them, and hoping that the cells’ repair machinery sews the DNA into the genome in the right way. Usually they have to use antibiotics and drugs to screen out all the cells where the DNA gets jammed into the genome haphazardly. Also, Jin adds that CRISPR/Cas technology can be used for whole-genome screens.

Tamara Caspary, a developmental biologist and scientific director of Emory’s transgenic mouse and gene targeting core, says she and her core team are in the process of developing and validating CRISPR, so that the technique could be accessible to many Emory investigators.

Potential clinical uses: Japanese scientists have proposed that CRISPR/Cas be employed against HIV infection. One can envision similar gene therapy applications.

Posted on by Quinn Eastman in Uncategorized 4 Comments