Beyond the amyloid hypothesis: proteins that indicate cognitive stability

If you’re wondering where Alzheimer’s research might be headed after the latest large-scale failure of a clinical trial based on the “amyloid hypothesis,” check this Read more

Mother's milk is OK, even for the in-between babies

“Stop feeding him milk right away – just to be safe” was not what a new mother wanted to hear. The call came several days after Tamara Caspary gave birth to fraternal twins, a boy and a girl. She and husband David Katz were in the period of wonder and panic, both recovering and figuring out how to care for them. “A nurse called to ask how my son was doing,” says Caspary, a developmental Read more

Focus on mitochondria in schizophrenia research

Despite advances in genomics in recent years, schizophrenia remains one of the most complex challenges of both genetics and neuroscience. The chromosomal abnormality 22q11 deletion syndrome, also known as DiGeorge syndrome, offers a way in, since it is one of the strongest genetic risk factors for schizophrenia. Out of dozens of genes within the 22q11 deletion, several encode proteins found in mitochondria. A team of Emory scientists, led by cell biologist Victor Faundez, recently analyzed Read more

American Society for Clinical Oncology

Why checkpoint inhibitors fall short for some types of cancer

The big news from the recent American Society of Clinical Oncology meeting has been largely about immunotherapy drugs, also known as checkpoint inhibitors. These drugs have been shown to be effective in prolonging life in patients with some types of cancer, such as lung cancer and melanoma, but not others, such as colorectal and prostate cancer.

Lab Land asked oncologist Bradley Carthon and immunology researcher Haydn Kissick why. Both Carthon’s clinical work and Kissick’s lab research on prostate cancer are featured in the new issue of Winship magazine, but the prostate feature just touches on checkpoint inhibitors briefly.

Carthon says the reason checkpoint inhibitors haven’t moved the needle with prostate cancer is “likely due to the absence of infiltration of the prostatic tissue by tumor-associated lymphocytes.”

Checkpoint inhibitors are supposed to unleash the immune system, but if the immune cells aren’t in contact with the cancer cells so that the drugs can spur them into action, they won’t help much. Carthon says: “The answer may be to ‘prime’ the prostate with an agent, then introduce the checkpoint inhibitors.” Read more

Posted on by Quinn Eastman in Cancer, Immunology Leave a comment