Repurposing a transplant drug for bone growth

The transplant immunosuppressant drug FK506, also known as tacrolimus or Prograf, can stimulate bone formation in both cell culture and animal Read more

Beyond the amyloid hypothesis: proteins that indicate cognitive stability

If you’re wondering where Alzheimer’s research might be headed after the latest large-scale failure of a clinical trial based on the “amyloid hypothesis,” check this Read more

Mother's milk is OK, even for the in-between babies

“Stop feeding him milk right away – just to be safe” was not what a new mother wanted to hear. The call came several days after Tamara Caspary gave birth to fraternal twins, a boy and a girl. She and husband David Katz were in the period of wonder and panic, both recovering and figuring out how to care for them. “A nurse called to ask how my son was doing,” says Caspary, a developmental Read more

Alejandra San Martin

Nox-ious link to cancer Warburg effect

At Emory, Kathy Griendling’s group is well known for studying NADPH oxidases (also known as Nox), enzymes which generate reactive oxygen species. In 2009, they published a paper on a regulator of Nox enzymes called Poldip2. Griendling’s former postdoc, now assistant professor, Alejandra San Martin has taken up Poldip2.

Griendling first came to Nox enzymes from a cardiology/vascular biology perspective, but they have links to cancer. Nox enzymes are multifarious and it appears that Poldip2 is too. As its full name suggests, Poldip2 (polymerase delta interacting protein 2) was first identified as interacting with DNA replication enzymes.  Poldip2 also appears in mitochondria, indirectly regulating the process of lipoylation — attachment of a fatty acid to proteins anchoring them in membranes. That’s where a recent PNAS paper from San Martin, Griendling and colleagues comes in. It identifies Poldip2 as playing a role in hypoxia and cancer cell metabolic adaptation.

Part of the PNAS paper focuses on Poldip2 in triple-negative breast cancer, more difficult to treat. In TNBC cells, Poldip2’s absence appears to be part of the warped cancer cell metabolism known as the Warburg effect. Lab Land has explored the Warburg effect with Winship’s Jing Chen.

Posted on by Quinn Eastman in Cancer, Heart Leave a comment

Focal adhesions in Technicolor

i-QMq63rH-S

Mouse embryonic fibroblasts forming focal adhesions

Congratulations to Alejandra Valdivia, PhD, winner of the Best Image contest held as part of the Emory Postdoctoral Research Symposium, which takes place next week (Thursday, May 19). She is in Alejandra San Martin’s lab, studying NADPH oxidase enzymes and how they regulate cell migration.

Valdivia submitted this image of mouse embryonic fibroblasts forming focal adhesions, points of contact of the cell with the extracellular matrix. Focal adhesions allow the cells to adhere and migrate.

Explanation: Red is for paxillin, a protein concentrated in focal adhesions. Green is phalloidin, a toxin from mushrooms that binds one type of the cytoskeletal protein actin, seen here as stress fibers. Blue is DNA, showing the cells’ nuclei.

 

Posted on by Quinn Eastman in Heart Leave a comment