Overcoming cardiac pacemaker "source-sink mismatch"

Instead of complication-prone electronic cardiac pacemakers, biomedical engineers at Georgia Tech and Emory envision the creation of “biological Read more

Hope Clinic part of push to optimize HIV vaccine components

Ten years ago, the results of the RV144 trial– conducted in Thailand with the help of the US Army -- re-energized the HIV vaccine field, which had been down in the Read more

Invasive cancer cells marked by distinctive mutations

What does it take to be a leader – of cancer cells? Adam Marcus and colleagues at Winship Cancer Institute are back, with an analysis of mutations that drive metastatic behavior among groups of lung cancer cells. The findings were published this week on the cover of Journal of Cell Science, and suggest pharmacological strategies to intervene against or prevent metastasis. Marcus and former graduate student Jessica Konen previously developed a technique for selectively labeling “leader” Read more

Alberto Moreno

Malaria vaccine development: chimeric protein, no myth

Third in a series on malaria immunology from graduate student Taryn McLaughlin. Sorry for the delay last week, caused by technical blog glitches.

It’s easy for me to find reasons to brag when it comes to research here at Emory. However, even an unbiased person should be excited about the malaria vaccine platform being developed by Alberto Moreno at the Emory Vaccine Center.

His vaccine is based on a chimeric protein (a protein that is a combination of bits and pieces of multiple proteins, a la the creature from Greek mythology) that should get your immune system to target multiple stages of the Plasmodium vivax life cycle. Part of it targets the infectious sporozoite, part of it targets the blood stage merozoite, and part of it will even target the transmitted gamete in future versions. This seems like a no brainer. Of course we should be targeting multiple stages! 
Read more

Posted on by Quinn Eastman in Immunology Leave a comment