Mysterious DNA modification important in fly brain

Drosophila, despite being a useful genetic model of development, have very little DNA methylation on C. What they do have is methylation on A (technically, N6-methyladenine), although little was known about what this modification did for Read more

Where it hurts matters in the gut

What part of the intestine is problematic matters more than inflammatory bowel disease subtype (Crohn’s vs ulcerative colitis), when it comes to genetic activity signatures in pediatric Read more

Overcoming cisplatin resistance

Cisplatin was known to damage DNA and to unleash reactive oxygen species, but the interaction between cisplatin and Mek1/cRaf had not been observed Read more

2B4

2B4: potential immune target for sepsis survival

Emory immunologists have identified a potential target for treatments aimed at reducing mortality in sepsis, an often deadly reaction to infection.

2B4 is an inhibitory molecule found on immune cells. You may have heard of PD1, which cancer immunotherapy drugs block in order to re-energize the immune system. 2B4 appears to be similar; it appears on exhausted T cells after chronic viral infection, and its absence can contribute to autoimmunity.

In their new paper in Journal of Immunology, Mandy Ford, Craig Coopersmith and colleagues show that 2B4 levels are increased on certain types of T cells (CD4+ memory cells) in human sepsis patients and in a mouse model of sepsis called CLP (cecal ligation + puncture). Genetically knocking out 2B4 or blocking it with an antibody both reduce mortality in the CLP model. The effect of the knockout is striking: 82 percent survival vs 13 percent for controls.

How does it work? When fighting sepsis, 2B4 knockout animals don’t have reduced bacterial levels, but they do seem to have CD4+ T cels that survive better. CD4+ T cells, especially memory cells, get killed in large numbers during sepsis, and this is thought to contribute to mortality. Read more

Posted on by Quinn Eastman in Immunology Leave a comment