Overcoming cardiac pacemaker "source-sink mismatch"

Instead of complication-prone electronic cardiac pacemakers, biomedical engineers at Georgia Tech and Emory envision the creation of “biological Read more

Hope Clinic part of push to optimize HIV vaccine components

Ten years ago, the results of the RV144 trial– conducted in Thailand with the help of the US Army -- re-energized the HIV vaccine field, which had been down in the Read more

Invasive cancer cells marked by distinctive mutations

What does it take to be a leader – of cancer cells? Adam Marcus and colleagues at Winship Cancer Institute are back, with an analysis of mutations that drive metastatic behavior among groups of lung cancer cells. The findings were published this week on the cover of Journal of Cell Science, and suggest pharmacological strategies to intervene against or prevent metastasis. Marcus and former graduate student Jessica Konen previously developed a technique for selectively labeling “leader” Read more

2B4

2B4: potential immune target for sepsis survival

Emory immunologists have identified a potential target for treatments aimed at reducing mortality in sepsis, an often deadly reaction to infection.

2B4 is an inhibitory molecule found on immune cells. You may have heard of PD1, which cancer immunotherapy drugs block in order to re-energize the immune system. 2B4 appears to be similar; it appears on exhausted T cells after chronic viral infection, and its absence can contribute to autoimmunity.

In their new paper in Journal of Immunology, Mandy Ford, Craig Coopersmith and colleagues show that 2B4 levels are increased on certain types of T cells (CD4+ memory cells) in human sepsis patients and in a mouse model of sepsis called CLP (cecal ligation + puncture). Genetically knocking out 2B4 or blocking it with an antibody both reduce mortality in the CLP model. The effect of the knockout is striking: 82 percent survival vs 13 percent for controls.

How does it work? When fighting sepsis, 2B4 knockout animals don’t have reduced bacterial levels, but they do seem to have CD4+ T cels that survive better. CD4+ T cells, especially memory cells, get killed in large numbers during sepsis, and this is thought to contribute to mortality. Read more

Posted on by Quinn Eastman in Immunology Leave a comment