Learn about science writing careers from a pro

Damiano has experience at a communications/PR agency for life science and healthcare Read more

The time Anna stayed up all night

Almost precisely a decade ago, a young Atlanta lawyer named Anna was returning to work, after being treated for an extraordinary sleep disorder. Her story has been told here at Emory and by national media outlets. Fast forward a decade to Idiopathic Hypersomnia Awareness Week 2018 (September 3-9), organized by Hypersomnolence Australia. What this post deals with is essentially the correction of a date at the tail end of Anna’s story, but one with long-term implications Read more

Mini-monsters of cardiac regeneration

Jinhu Wang’s lab is not producing giant monsters. They are making fish with fluorescent hearts. Lots of cool Read more

Immunology

Whole exome sequencing in IBD

Last year, pediatric gastroenterologist Subra Kugathasan gave an “old fashioned” grand rounds talk at Children’s Healthcare of Atlanta’s Egleston hospital, describing a family’s struggle with a multifaceted problem of autoimmunity.

Subra Kugathasan, MD

Now the Journal of Pediatric Gastroenterology and Nutrition paper, on how the genetic alteration underlying the family’s struggles was identified, is published. Kugathasan reports that the young man at the center of the paper is scheduled for allogeneic bone marrow transplant in the United States (but not in Atlanta) in the next couple months.

The list of troubles the members of the family had to deal with is long: gastrointestinal issues and food allergies, skin irritation, bacterial + yeast infections, and arthritis. The mother and her brother were affected to some degree, as well as all three of the kids (see tree diagram). The youngest brother is the “proband”, a geneticist’s term for starting point.

As determined by whole exome sequencing, the gene responsible is FOXP3, which controls the development of regulatory T cells. These are cells that restrain the rest of the immune system; if they aren’t functioning correctly, the immune system is at war with the rest of the body, like in this family.

The genetic variant identified was new — that’s why whole exome sequencing was necessary to find it. The authors conclude:

Supporting the utility of WES [whole exome sequencing] in familial clusters of atypical IBD [inflammatory bowel disease], this approach led to a definitive diagnosis in this case, resulting in a justifiable treatment strategy of allogeneic bone marrow transplantation, the treatment of choice for IPEX [Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome].

Bone marrow transplant is a big deal; doctors are essentially wiping out the immune system then bringing it back, with several associated risks. So the decision to go ahead is not taken lightly. In general, whether bone marrow transplant — either autologous (patient donates back to self) or allogeneic (the donor is someone else) — is appropriate as a treatment for inflammatory bowel disease is still being investigated. Here, since a genetic origin is clear and there are autoimmune effects beyond the digestive system, it becomes the treatment of choice.

Posted on by Quinn Eastman in Immunology Leave a comment

Two angles on cell death

One can take two very different angles when approaching Bill Kaiser’s and Ed Mocarski’s work on RIP kinases and the mechanisms of cell death. These are: the evolutionary where-does-apoptosis-come-from angle, and the anti-inflammatory drug discovery angle.

A pair of papers published this week, one in PNAS and one in Journal of Immunology, cover both of these angles. (Also, back to back papers in Cell this week, originating from Australia and Tennessee, touch on the same topic.)

First, the evolutionary angle.

Cellular suicide can be a “scorched earth” defense mechanism against viruses. Kaiser and Mocarski have been amassing evidence that some forms of cellular suicide arose as a result of an arms race of competition with viruses. The PNAS paper is part of this line of evidence. It shows that the cell-death circuits controlled by three different genes (RIP1, RIP3 and caspase 8) apparently can be lifted cleanly out of an animal. Mice lacking all three genes not only can be born, but have well-functioning immune systems.

Apoptosis is thought to be a form of cellular suicide important for the development of all multicellular organisms. That’s why, to cell and developmental biologists, it seemed rather shocking that researchers can mutate a group of genes that drive apoptosis and other forms of cellular suicide and have adult animals emerge.

Next, the drug discovery angle.

The J. Immunol paper makes that angle clear enough. Most of the authors on this paper are from GlaxoSmithKline’s “Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area.” Here, they show that a mutation in RIP1 inactivating the kinase enzyme protects mice against severe skin and multiorgan inflammation. They conclude their abstract with: “Together, these data suggest that RIP1 kinase represents an attractive therapeutic target for TNF-driven inflammatory diseases.”

Note: TNF-driven inflammatory diseases include rheumatoid arthritis, inflammatory bowel diseases and psoriasis, representing a multibillion dollar market.

 

Posted on by Quinn Eastman in Immunology Leave a comment

How CMV gets around

Human cytomegalovirus infects most people in the United States by the time they are 40 years old. HCMV is usually harmless in children and adults, but when pregnant women are infected for the first time, the infection can lead to hearing, vision or other problems in their babies once they are born. [It is also a problem for organ transplant recipients.] According to the Centers for Disease Control and Prevention, HCMV is usually transmitted by sexual contact, diapers or toys. Notably absent are references to needles. That means scientists who study how mouse CMV infection takes place by injecting the virus into the animal’s body are missing a critical step.

Postdoc Lisa Daley-Bauer, working with CMV expert Ed Mocarski, has a recent paper in the journal Cell Host & Microbe illuminating how the virus travels from sites of initial infections to the rest of the body. Defining the cells the virus uses to get around could have implications for efforts to design a HCMV vaccine.

The virus hijacks part of the immune system, the authors find. CMV emits its own attractant (or chemokine) for patrolling monocytes, a type of white blood cell that circulates in the skin and peripheral tissues. This attractant, called MCK2, is only important when mice are infected by footpad inoculation, not by systemic injection.

Posted on by Quinn Eastman in Immunology Leave a comment

Two heavy hitters in this week’s Nature

Two feature articles in Nature this week on work by Emory scientists.

One is from Virginia Hughes (Phenomena/SFARI/MATTER), delving into Kerry Ressler’s and Brian Dias’ surprising discovery in mice that sensitivity to a smell can be inherited, apparently epigenetically. Coincidentally, Ressler will be giving next week’s Dean’s Distinguished Faculty lecture (March 12, 5:30 pm at the School of Medicine).

Another is from Seattle global health writer Tom Paulson, on immunologist Bali Pulendran and using systems biology to unlock new insights into vaccine design.

Posted on by Quinn Eastman in Immunology, Neuro Leave a comment

Souped-up method for iPS cell reprogramming

Peng Jin and collaborators led by Da-Hua Chen from the Institute of Zoology, Chinese Academy of Sciences have a new paper in Stem Cell Reports. They describe a souped-up method for producing iPS cells (induced pluripotent stem cells).

Production of iPS cells in the laboratory is becoming more widespread. Many investigators, including those at Emory, are using the technology to establish “disease in a dish” models and derive iPS cells from patient donations, turning them into tools for personalized medicine research.

Read more

Posted on by Quinn Eastman in Cancer, Immunology, Neuro Leave a comment

HIV discordant couples

On Thursday, NPR had a nicely done story on discordant couples (one partner is HIV positive, the other is HIV negative) in Kenya.

It provided a reminder of Susan Allen’s work in Rwanda and Zambia with discordant couples. It also very simply laid out the policy issues connected with treating discordant couples:

Medical workers are http://www.raybani.com/ extremely interested in discordant couples for two reasons. One is that almost half of new infections in Kenya happen in these relationships. It’s one place where HIV is spreading. The second reason is that when couples are open with each other about their HIV status, managing HIV is more successful…

The World Health Organization now recommends that any HIV-positive individual in a discordant relationship be supplied HIV treatment. But discordant couples are still being treated on an ad hoc basis in Kenya, primarily because the funding for the medication just isn’t there.

Allen’s research provided critical data about HIV Ray Ban outlet transmission and prevention methods, and led to the adoption of the WHO guidelines mentioned in the story. She has said that the WHO guidelines were designed to help partners in a stable relationship work together to prevent the uninfected person from getting the virus and that low-tech, inexpensive prevention methods like condoms are just as important as antiretroviral therapy in this effort.

Posted on by Quinn Eastman in Immunology Leave a comment

Unexpected effect on flu immunity

Immunologists reported recently that the drug rapamycin, normally used to restrain the immune system after organ transplant, has the unexpected ability to broaden the activity of a flu vaccine.

The results, published in Nature Immunology, indicate that rapamycin steers immune cells away from producing antibodies that strongly target a particular flu strain, in favor of those that block a wide variety of strains. The results could help in the effort to develop a universal flu vaccine.

This study was inspired by a 2009 Nature study from Koichi Araki and Emory Vaccine Center director Rafi Ahmed, reports Jon Cohen in Science magazine. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Cancer’s shield: PD-1

Gina Kolata has a section front story in Tuesday’s New York Times exploring the potential of a relatively new class of anticancer drugs. The drugs break through “shields” built by cancers to ward off the threat posed by the patient’s immune system. Many are based on blocking PD-1, an immune regulatory molecule whose importance in chronic infections was first defined by Emory’s Rafi Ahmed.

Of course, not every cancer research development described as transformative in the New York Times lives up to the hype. But the clinical trial results, reported in the New England Journal of Medicine, are solid enough that the researchers Kolata talks with think they are seeing “a moment in medical history when everything changed.” [Winship Cancer Institute’s John Kauh was a co-author on one of the 2012 NEJM papers.]

Let’s take a moment to examine some of the roots of this story. Rafi Ahmed didn’t set out to study cancer. For the last two decades, he and his colleagues have been studying T cells, parts of the immune system that are critical for responding to infections. Read more

Posted on by Quinn Eastman in Cancer, Immunology 2 Comments

All about Saccharomyces boulardii

Pediatric infectious disease specialist Tracey Lamb earned recognition this week for her NIH New Innovator award. The goal of Lamb’s project is to develop a probiotic yeast as a platform for inexpensive oral vaccines.

“We have a long way to go to develop this vaccine Magliette Calcio A Poco Prezzo delivery system to the point where it is ready for testing in the clinic,” she says. “Now my lab can undertake more intensive research on this project to demonstrate that our design is effective in protecting against infection.”

Three points:

1. The probiotic yeast Lamb is planning to develop as a vaccine platform is Saccharomyces boulardii, which has been tested in clinical trials as a treatment for gastrointestinal disorders such as Clostridium dificile infection and several forms of diarrhea. It was originally isolated in the 1920s from fruit in Southeast Asia.

2. Saccharomyces boulardii is very close to standard baker’s yeast, Saccharomyces cerevisiae, and is actually considered a subspecies of S. cerevisiae. Genomic differences that http://www.magliettedacalcioit.com contribute to its probiotic properties are under investigation.

3. The New Innovator program, running since 2007, is one of the ways the National Institutes of Health seeks to reward especially creative or potentially transformative research proposals. The New Innovator awards, up to $1.5 million over five years, are meant for newly independent researchers building their careers. Lamb managed to snag Emory’s first.

Posted on by Quinn Eastman in Immunology Leave a comment

Mix-and-match immune regulators

Go check out the article on the Emory Office of Technology Transfer’s site on Jacques Galipeau and the artificial chimeric immune stimulators he’s invented. He and his colleagues take one immune regulatory molecule, GM-CSF, and stick it onto others, creating a series of potent immune stimulants he calls “fusokines.” According to Galipeau, one of them turns antibody-producing B cells into The Hulk. Another is like a five hour energy drink.

These super-stimulants may be especially ray ban outlet effective in the realm of cancer, where the immune system is not responding to a stealthy threat. But in dealing with autoimmune diseases such as multiple sclerosis or inflammatory bowel disease, it is more necessary to rein in over-enthusiastic immune cells. Galipeau has devised a fusokine that apparently reprograms cells into being more orderly.

 

Posted on by Quinn Eastman in Immunology Leave a comment